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Abstract

Objective: The concept of tissue engineering holds huge promise for thefuture treatment of osseous
defects. For bone tissue engineering, stem cells are applied on supporting scaffolds under controlled
stimulation with growth factors. Scaffolds are provisional matrices for bone growth providing a
specific environment for tissue development and favoring cellular attachment, growth and
differentiation. To date, ceramics, polymers, and composite scaffolds have been widely used for bone
tissue engineering in various in-vitro and animal studies. The objective of this article was to review

Review of Literatures

the advances in jaw bone engineering from a scaffold material point of view.
Methods: A review of literature was carried out by using Medline database and searching topics like

EEINTS

99 <,

“craniomaxillofacial tissue engineering”, “bone regeneration”, “scaffold”, “oral surgery”, “stem cell+

scaffold”, “xenograft” and “allograft”.Animal

and human studies evaluating repair of

craniomaxillofacial defects with scaffold and stem cells, were considered in this study.

Results: A total of 64 studies were evaluated.

Conclusion: Based on the results of this literature review, although autogenous bone grafting has
remained the preferred strategy for treatment of bone defects, rapid prototyping (RP) techniques do
offer great opportunities to generate suitable scaffolds for bone tissue engineering in near future.
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Introduction:

Craniofacial defects due to trauma, periodontal
disease, surgical bone resection and congenital
and acquired defects decrease bone volume and
do not heal spontaneously. Such defects require
bone grafting (1, 2). Autogenous bone grafting is
still the gold standard for reconstruction of these
defects. However, its disadvantages including its
limitation, painful surgery, risk of infection,
bleeding, nerve damage and loss of function
have made the researchers to look for an
alternative (3).
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Tissue engineering was first introduced in early
nineties to make up for these limitations. It is the
science of designing and manufacturing new
tissue to resume and restore the function of
defected or lost tissues. The principals of tissue
engineering are based on biological and
molecular cell proliferation, and tissue formation
through biologic engineering (4). Correct
perception of the function of cells, structure of
the extracellular matrix and adequate knowledge
about the structure of scaffolds for providing a
suitable environment for adhesion and
maintenance of cells are the key concepts of
tissue engineering (5). Bone tissue engineering
necessarily requires 3 components:



preosteoblastic cells, osteogenic growth factor,
and a scaffold for cell adhesion and preserving
cell function (5-7). The most important
superiority ~ of  tissue engineering over
autogenous bone grafting is that the tissue graft
in exogenous tissue engineering can be produced
outside the body and therefore has no limitation
and does not do any damage to the living cells

(7).

Stem cells have a great potential for application
in  cell-mediated treatments and tissue
engineering due to their self-renewal property
and ability to differentiate to various cells such
as osteoblasts under the induction of host tissue
or culture medium (8-10). However, one
drawback of tissue engineering is that it requires
large amounts of cells (11). In osteogenic tissue
engineering, stem cells need growth factors to
start their function (5). Growth factors can be
provided for cells through different methods.
Transmission of gene encoding growth factor to
the host cell (12-14), affinity of growth factor to
the scaffold and its controlled release during the
degradation of scaffold (15, 16), use of scaffolds
that contain growth factor in their natural
structure (17, 18) and cell culture in presence of
growth factors (19) are among these techniques.

A scaffold is required for the migration of cells
to the site of defect. It also plays a key role for
progenitor cells in tissue engineering (20).
Initially, a scaffold should create a suitable extra
cellular matrix for growth and differentiation of
cells. It should also be able to reconstruct and
resume the proper function of tissue (1).
Considering the fact that at present numerous
commercial scaffolds are available in the market
for application in tissue engineering, the
cliniciansand researchers should compare their
choice of scaffold with theideal one before
application for bone reconstruction.

In summary, an ideal scaffold for bone tissue
engineering should have the following
characteristics:

1- Biocompatibility

2- Easy application and having the ability
to be fixed in the defect

3- Having osteoconductive and
osteoinductive properties
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4- Biodegradation rate similar to the pace
of new bone formation in the body

5- Having a continuous porous structure to
allow for growth and differentiation of
stem cells and import and export of
materials and substances

6- Having mechanical properties similar to
that of the natural bone

7- Having the potential for rapid
angiogenesis (1, 21-23)

To date, no ideal scaffold has been found to
meet all the above mentioned criteria for bone
tissue engineering.

For three dimensional designing of scaffolds for
bone reconstruction, several considerations have
to be followed such as having a continuous
porous structure (24, 25). A summary of several
techniques used for manufacturing of synthetic
bone scaffolds is presented below (For further
details regarding each technique you can refer to
the review articles published in this respect) (22,
26):

1) Solvent-Casting and Particulate
Leaching Technique: In this simple method,
a water soluble salt is combined with a
biodegradable scaffold and an organic
solvent and poured in the desired frame.
After evaporation of solvent, salt particles
are rinsed and a porous scaffold of desired
shape is obtained (22).

2) Emulsion Freeze Drying: This method
has been used for the fabrication of PLGA
or poly (lactic-co-glycolic acid) scaffold
with high porosity (>90%)(27). In this
method, an emulsion of organic solvent,
scaffold and water is cooled down quickly.
Water and organic solvent are then extracted
using Freeze Drying and a high porosity
scaffold is obtained (22).

3) Gas-Foaming Process: In this method a
highly porous scaffold is produced without
using a solvent by increasing and decreasing
the pressure of gas like CO, (22)

4) Electro-spinning: In this method an
electrical charge is used to control the
deposition of polymer fibers on a substrate.
Eventually a polymer fiber scaffold of
desired size is formed (22).
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5) Thermally Induced Phase Separation: In
this method, the scaffold is dissolved in the
solvent at high temperatures. By reducing
the temperature, separation of 2 phases of
solid-liquid or liquid-liquid is done and a
porous scaffold is obtained (22, 26).

6) Rapid-Prototyping Technique: In this
method, designing and fabrication of the
scaffold are done by computer software.
Shape of defects determined using CT scan
or MRI image and the computer commands
the fabrication of scaffold with desired
shape to the bioreactor (22,28). Bioreactor
can load the cells and growth factor onto the
scaffold simultaneous with its formation
(29). Thus, a scaffold including cells and
growth factor is obtained in the form of
defect. The obtained scaffold has relatively
low porosity and its mechanical properties
need to be improved (30). However, this
method can cause great advancements in the
field of tissue engineering.

The present study aimed to discuss different
types of scaffolds and their fabrication
technique and review the scaffolds used for
craniomaxillofacial bone reconstruction
through the application of stem cells.

Qualitative
evaluation of
64 articles

113 articles

.

<: 1144 articles

Methods:

A Pub-Med search was done using the key
words “tissue engineering”, “bone regeneration”,
“stem cell+ scaffold”, “oral surgery”, “scaffold”,
“allograft” and “xenograft”. Manual search was
done through selected journals published by
February 2012. All articles evaluating
reconstruction and repair of craniomaxillofacial
bone defects in humans or animal models using
a scaffold and stem cells were entered the study.
Those assessing the reconstruction of bone
defects due to infection, malignancy, systemic
disease and osteonecrosis were excluded from
the study.

Results:

Of a total of 1,144 articles found through
searching the databases using key words and
manual search in selected journals, 113 were
chosen after reviewing their title and abstract.
The full texts of these articles were reviewed and
in the next phase, 64 articles that matched our
inclusion and exclusion criteria were selected
and evaluated qualitatively. The process of
article selection is demonstrated in Figure 1.

Manual and
internet search

Complete evaluation Evaluation of
of  articles  and title and abstract
exclusion of 49 of articles and
articles because they exclusion of
did not match our 1,031 articles
inclusion and because they
exclusion criteria were irrelevant

Figure 1- The process of article selection in this review study

Findings obtained from qualitative evaluation
of articles:
Scaffolds for bone tissue engineering:

Based on the obtained results, scaffolds used for
bone tissue engineering are divided into 3 main

groups of natural, synthetic, and composite (31-
34)(Table 1). Hydrogels are a group of scaffolds
that are presently used and can have natural
(collagen, hyaluronic acid, alginate, etc.) or
synthetic (poly ethylene glycol, self-assembling
peptides, etc.) origin (35).
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Table 1- Different scaffolds used for craniomaxillofacial bone tissue engineering

Natural scaffolds

Synthetic scaffolds

Natural organic | Natural inorganic

Synthetic Polymer

Composite scaffolds
Synthetic Ceramic

Calcium Magnesium
nono-

hyaluronic acid-
based hydrogel

Collagen Sponge Silver PLGA Phosphate Cement hydroxyapatite/collagen/PLLA
(CMPC)

PRP Coral PLG BTCP Octacalcium phosphate/collagen
Gelatin Sponge Silk fibroin protein PLLA HA/TCP Nano-hydroxyapatite/polyamide 6
Gelatin Premineralized silk . . .

Hydrogel fibroin protein PGA Flurohyhroxyapatite | nono-hydroxyapatite/polyamide66
PuraMatrix ABB PLA hydroxyapatite-coated PLGA
Alginate PLA-PEG HA/PLGA
Partially .
demineralized fibronectin-coated BTCP/Collagen
. PLA
bone matrix
Bio-Oss PEG-DA . DBM/PLA
Ca-deficient
Allograft PEG-MMP hydroxyapatite nano-hydroxyapatite/polyamide
Deer antler (CDHA)
Fibrin Sealant PVDC OsteoSet
: octacalcium phosphate
Gelatin foam precipitated (OCP) alginate
Collagen gel polycaprolactone demineralized bone powders/PLA

apatite-coated PLGA

self-assembling peptide nanomaterial

TCP: Tricalcium phosphate — HA: hydroxyapatite — DBM:Demineralized bone matrix — PLGA: poly (lactic-co-glycolic acid)
— PLA: poly (D, L-lactic acid) — PGA: poly (glycolic acid) — PLLA: poly (L-lactic acid) — PVDC: Polyvinylidene chloride —
PEG:polyethylene glycol — DA:diacrylate — MMP:matrix metalloproteinases — ABB: anorganic bovine bone — Puramatrix: a

Natural scaffolds:

Natural scaffolds are derived from the materials
present in the nature, human body, plants,
insects, or animals. These scaffolds are either
ceramic having a structure similar to natural
bone because of having hydroxyapatite or a
similar substance, or have a structure similar to
bone organic matrix proteins such as collagen,
osteopontin and osteonectin.

Natural organic scaffolds:

Organic scaffolds include platelet-rich plasma
(PRP), collagen, gelatin, fibrin, alginate,
Chitosan and demineralized natural bone
(allograft). These materials usually provide a

natural substrate for adhesion, differentiation
and proliferation of cells. However, this group of
scaffolds wusually has uncontrollable poor
mechanical properties. Table 2 demonstrates
natural organic scaffolds used in various studies
conducted within the time period of the present
review.

Natural inorganic Scaffolds:

natural Inorganic scaffolds possess suitable
biocompatibility and osteoconductive properties
because they are structurally similar to the
mineralized tissues in the body. Table 3
summarizes the inorganic natural scaffolds used
in various studies conducted during the present
study period.
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Table 2- Natural organic scaffolds
Year of Site &
. Type of Type of Growth
Authors Publica form of yp P Result
. . stem cell scaffold factor
tion lesion
Zou et al. 5mm BMSCs Gelatin HIF-1o, After 8 weeks, histological evalufition revealed
2012 . . 57.43%3%0.21 bone formation and
(36) calvaria modified Sponge gene 9.6%+0.27angiogenesis
Yamada et al. 2011 Posterior BMSCs PRP After 3 months, radiography demonstrated 8.2+1.6 mm
37) maxilla increase in bone height
BMSCs After 8 weeks, histometric analysis demonstrated
Yamada et al. 2011 10*10mm DPSCs PRP 54.7%%2.2, 16.6%+1.3% and 52.8+3.5% new bone
(38) mandible DTSC formation in pDTSCs/PRP, cDPSCs/PRP and
s cMSCs/PRP, respectively
Kohgo et al. Smm . After 8 weeks, histometric analysis demonstrated
2011 BM PuraMat PRP >
(39) mandible SCs uraiiatix 55.64% bone formation around the implant
Ben-David et al. Smm Gelatin
2011 . BMSCs After 8 weeks, pCT showed 65% bone formation
(40) calvaria Hydrogel
. Alginate s After 3 months, histological §valuati0n an(_i CT scan
Chang et al. 2010 5%2mm BMSCs Collagen type | BMP2 gene showed almost complete repair of defect with spongy
41) Calvaria modified ) bone and MPa 81/112 in the collagen group and almost
no new bone formation in the alginate group.
After 3 weeks, histological evaluation revealed a mean
Cheung et al. 3.5 mm Collagen ’ g
( 4§) 2010 calvaria ADSCs Spongge number of 34.7 vessels per mm’ and osteogenesis at the
defect margins
Liu et al. Smm partially After 12 weeks, nCT showed almost complete repair of
@3) 2010 calvaria UCBMSCs | demineralized defect and formation of bone with a density
bone matrix approximately similar to that of natural bone
small
Kim et al. 2010 5*5 mm BMSCs intestine After 4 weeks, histological evaluation demonstrated
(44) calvaria submucosa 46% new bone formation
(SIS) sponge
d'Aquino et al. 2009 15mm DPSCs Collagen After 3 months, clinical and radiographic assessments
(45) mandible Sponge revealed more than 70% bone reconstruction
Arpornmacklong 5mm After 6 weeks, histological examination revealed bone
et al. 2009 lvari ESCMSCs Bio-Oss formation at the defect margins and formation of
(46) calvana fibrous and granulation tissue at the center of defect.
After 6 weeks, nCT showed the volume of newly
Usas et al. 2009 Smm MDSCs CG&FS & BMP4 oene | formed bone to be 102.85+51.4 mm® in repair with GS,
(14) calvaria modified GS g 11.57£0.6 mm’ in repair with CG and 12.02+6.2 mm®
in repair with FS
Bohnenblust 8mm . .
otal. 2009 : ADSCs Allograft After 6 weeks, mineral density of the newly formed
@7) calvaria bone was 1365+160.4
Kim et al 8mm hyaluronic i i i
. 2007 _ BMSCs acid-based BMP2 After 4 weeks, histological evaluation showed mature
(48) calvaria hydrogel bone formation and vascular factors were also traced.
Maxillary
; pTCP, After 4 to 7 months, histomorphogenic analysis
. sinus floor
Smiler et al. 2007 & BMSCs xenograft & demonstrated 43% and 45% new bone formation in
(49) 0 resorbable resorbable algae, 40%, 23% and 16% in BTCP and 14%
ma?g(; ary algae and 32% in xenograft, respectively.
ridge
Dudas et al. 8mm . After 6 weeks, quantitative radiographic assessment
2006 AD latin f BMP2 i
(19) calvaria SCs . revealed repair of 65% of the defect.
Ito et al. 10mm Histologic evaluation demonstrated mature bone
(50) 2005 mandible BMSCs PRP formation. After 2 weeks, Vickers hardness test yielded
a value of 17
Lee et al. MDSC Coll
cecta 2001 Smm . y oragetl BMP2 gene Repair of 95-100% of defects after 4 weeks
51) modifiede sponge

BMSCs: Bone marrow mesenchymal stem cells — ADSCs: Adipose derived mesenchymal stem cells — MDSCs: Muscle derived mesenchymal stem
cells — DPSCs: Dental pulp stem cells — DTSCs: Deciduous tooth stem cells — UCBMSCs: Umbilical cord blood mesenchymal stem cells — ESCMSCs:
Embryonic stem cell derived mesenchymal stem cells — PRP: Platelet rich plasma — BMP: Bone morphogenetic protein — TCP: Tricalcium phosphate —
Puramatrix: a self-assembling peptide nanomaterial — CG: Collagen gel, — FS: Fibrin Sealant — GS: Gelatin Sponge
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Table 3- Natural inorganic scaffolds

Site &
Year of Type of Type of Growth
Authors Publication ffe';??)r?f stem cell scaffold factor Result
Yeetal. 2011 4mm iPSCs silver SATB2 After 5 weeks, histometric analysis showed
(52) calvaria modified gene %59.58+7.00 new bone formation
Enamel
Duan et al. 2011 1.§ 2mm iPSCs silver Matrix After 24 days, hlstometrlc. analysis revealed
(53) periodontal . %58.53+£2.67 new bone formation
Derivatives
Xiao et al. 12mm BMSCs After 24 weeks, histometric analysis demonstrated
201 . . | BMP2 ’ . .
(54) 010 orbital wall modified cora BE0C | 74 63%27.94 formation of a bony bridge
Zhang et al. 3mm BMSCs silk fibroin After 4  weeks, hlstologlcal evaluatl.on
2010 . . . BMP7 gene | demonstrated new bone formation at the margins
(55) calvaria modified protein . .
and bony islands in the center of defect
After 1 month, nCT demonstrated 33.18%=+3.92
Pieri et al. 8m‘m new bone formation and 3.11+0.56 mm increase in
(56) 2010 vemce}l ADSCs ABB height. Histometric analysis showed 47.96%+8.53
calvaria .
new bone formation
Lucaciu et al. 3mm After 2 and 4 months, histological evaluation
(17) 2010 Parietal BMSCs Deer antler demonstrated bone formation of a good quality
Pre-
Jiang et al. Smm BMSCs mineralized After 8 weeks, histometric analysis revealed
(13) 2009 Ramus modified silk fibroin BMP2 gene 57.79+7.96% new bone formation
protein
Cui et al. 20*20mm After 24 weeks, radiographic assessment revealed
200 . AD 1 .
(57) 7 Parietal SCs cora repair of 84.19%+6.45% of the defect
Hou et al 15mm After 16 weeks, radiographic assessment
' 2007 . BMSCs coral BMP2 demonstrated formation of bone with 77.45%
(58) calvaria .
opacity
Al-Salihi After 3 months, histological assessment revealed
(59) 2004 mandible BMSCs coral mature bone formation with abundant blood
vessels

BMSCs: Bone marrow mesenchymal stem cells — ADSCs: Adipose derived mesenchymal stem cells — iPSCs: induced pluripotent stem cells -BMP:
Bone morphogenetic protein — ABB: anorganic bovine bone

Synthetic scaffolds:

Synthetic scaffolds are divided into 2 groups of
polymer and ceramic.

Synthetic polymer scaffolds:

Synthetic polymer scaffolds used in different
studies are derived from polylactic acids or poly
glycolic acids. The main advantage of these
scaffolds is the ability to fabricate several
similar scaffolds and determining their
mechanical and chemical properties. Also,
growth factors can be incorporated into the
biodegradable scaffolds in this group like PLA

or poly (D, L-lactic acid), PGA or poly (glycolic
acid) and PLGA or poly (lactic-co-glycolic
acid). Therefore, during the degradation of
scaffold, these factors are gradually released.
Table 4 presents the studies conducted on
synthetic polymer scaffolds with the aim of
repairing maxillofacial bone defects.

Synthetic ceramic scaffolds:

These scaffolds include synthetic hydroxyapatite
(HA), Nano HA, Bioglass, Beta Tricalcium
Phosphate (BTCP), and Calcium Phosphate
(CaP). Studies conducted with these scaffolds
are summarized in Table 5.



Tabatabaei FS, etal 121

Table 4- Synthetic polymer scaffolds

Year of Site & form | Type of Growth
Authors Publication of lesion stem cell Type of scaffold factor Result
Songsong et al. 3*5mm BMSCs After 24 weeks, pCT demonstrated 60.7%+9.4%
(60) 2011 Condyle modified PLGA NELL-1 bone formation in the defect site
Hamajima et al. 2011 Smm BMSCs PVDC After 6 weeks, CT scan showed almost complete
(61) calvaria repair of defect
Wang et al. 7mm After 12 weeks, radiographic assessment
(62) 2010 calvaria BMSCs PLGA alendronate demonstrated 65% radio-opacity
Zong et al. Smm After 20 weeks, histometric analysis revealed
(63) 2010 calvaria BMSCs PLGA 53.9%+6.2% new bone formation
After 8 weeks, nCT showed 42% decrease in size
Tere(léi)et al. 2010 omm | BMSCs R BMP2 of defect in the PEG-DA group and 77%
decrease in the PEG-MMP group
. . After 6 weeks, histometric analysis revealed
Di B?élg)et al. 2008 CL?\I/I;IrIila ADSCs g:;:)er:ie}c)tﬁrx 12.09% new bone formation and radiographic
assessment revealed 30.60% radiodensity.
Liuetal. 6.5mm After 12 weeks, histometric analysis showed
(66) 2007 calvaria BMSCs PLG BMP2 78.8% new bone formation.
After 12 weeks, histometric analysis revealed
& >
Re?ét)al. 2007 rsnaﬁirir‘tl)rlr; BMSCs PL%?}:%]E:‘(A} & 81.9% new bone formation in PLGA group and
72.7% in PLA-PEG group
Ren et al. 5*12mm After 3 months, histological examination showed
(68) 2005 mandible BMSCs PLGA complete repair of the bone defect
Marei et al Mf;ﬁlzlllar After 4 weeks, histological evaluation revealed
(69) ’ 2005 incisor BMSCs PLA/PGA bone formation with a density of 74.94% in the
socket site
After 3 months, histological evaluation revealed
Schantz et al. 15mm newly formed bony islands and abundant blood
(70) 2003 calvaria BMSCs polycaprolactone vessels but the defect was not repaired
completely.

BMSCs: Bone marrow mesenchymal stem cells — ADSCs: Adipose derived mesenchymal stem cells —PRP: Platelet rich plasma — BMP: Bone
morphogenetic protein — PLGA: poly (lactic-co-glycolic acid) — PLA: poly (D, L-lactic acid) — PGA: poly (glycolic acid) — PLLA: poly (L-lactic acid) —
PVDC: Polyvinylidene chloride — PEG:polyethylene glycol — DA:diacrylate — MMP:matrix metalloproteinases

Table 5- Synthetic ceramic scaffolds

Year of Site & form of Type of Growth
Authors Publication lesion stem cell Type of scaffold factor Result
Calcium
Zou et al. . BMSCs Magnesium After 8 weeks, histometric analysis showed
71) 2011 Smm Calvaria modified | Phosphate Cement HIF-Ta 25.31% +5.16% new bone formation
(CMPC)
Zhao et al. . BMSCs BMP2 | After 8 weeks, histometric analysis showed
(12) 2010 smm Mandible modified prce gene 31.83+5.35% new bone formation
After 16 weeks, histometric analysis showed
Kim et al. 2009 10*5mm BMSCs HA/TCP 40.17% new bone formation in the BMSCs
(72) Mandible &PLSCs group and 36.51% new bone formation in
PLSCs group around the implant
1.5%2.5%2.5mm . . .
Zheng et al. 2009 Mandibular DTSCs BTCP Afte£ 6 months, hlStOm?tl’lC analysis showed
(73) . 83.1% new bone formation
Symphysis
Pieri et al. 3.5*%8mm After 3 months, histometric analysis showed
(74) 2009 edentulous ridge BMSCs FAP 45.28% new bone formation
Ca-deficient . . .
* Gk
Giogsl | a9 | Tl | puscs | hydoaare
(CDHA)
. 10mm . After 6 weeks, histometric analysis showed
Jafar(“;g)et al. 2008 Mandibular | Buscs | AT &Bio- 65.78% and 36.84% bone formation in
alveolar ridge HA/TCP and Bio-Oss groups, respectively
Shayesteh et al. Maxillary sinus After 3 months, histometric analysis revealed
(77 2008 floor BMSCs HA/TCP a mean of 41.34% bone formation
Khoiasteh et al After 6 weeks, histometric analysis revealed
) (78) ’ 2008 Smm Parietal BMSCs Bio-Oss & PTCP 1.44 mm and 2.53 mm bone repair in the
Bio-Oss and BTCP groups, respectively
Pieri et al. Maxillary sinus After 3 months, histometric analysis showed
(79) 2008 augmentation BMSCs FAP 42.51% new bone formation

BMSCs: Bone marrow mesenchymal stem cells — PLSCs: Periodontal ligament stem cells — DTSCs: Deciduous tooth stem cells — PRP: Platelet rich
plasma — BMP: Bone morphogenetic protein — TCP: Tricalcium phosphate — HA: hydroxyapatite — FAP: Fluorohydroxyapatite




Composite scaffolds:

Composite scaffolds are a combination of
polymer and ceramic scaffolds aiming at
reducing each one’s disadvantages. For example,
when a biodegradable polymer like PLGA is
combined with a bioactive material like CaP, the
alkaline products derived from degradation of
CaP can neutralize the acidic products derived
from the degradation of PLGA. Also, these
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scaffolds imitate the complex properties of
natural bone. However, some composite
scaffolds are made by the combination of natural
and synthetic materials.

Various combinations like hydroxyapatite/ polyamide,
hydroxyapatite/PLGA, Octacalcium Phosphate/Alginate,
TCP/eollagen and demineralized bone/PLA have
been used in different studies (Table 6).

Table 6- Composite scaffolds

Year of Site & Tvpe of Growth
Authors Publicatio | form of P Type of scaffold Result
. stem cell factor
n lesion
Liu et al 10 nono” After 12 weeks, hi ic analysis showed
iu et al. mm . ter 12 weeks, histometric analysis showe
hyd: tite/ i
(80) 2011 Alveolus | DPPSCs | hydroxyapatite BMP2 61.16%+2.18% new bone formation
collagen/PLLA
Kawai i 9 Octacalcium After 8 s hi . vsis d 4
awai et al. mm er 8 weeks, histometric analysis demonstrate
hosphate/coll ’
81) 20m Calvaria BMSCs P ospgzne cota 44.1%+1.7% new bone formation
Nano- . . .
Khadka et al. 2011 Smm‘ BMSCs hydroxyapatite/ After 8 weeks, histometric analysis showed more than
(82) Calvaria . 70% new bone formation
polyamide 6
Quetal 8mm BMSCs nono- After 4 weeks, density of microvessels was about
’ 2011 . . hydroxyapatite/ | bFGF gene | 70% and after 12 weeks they had more than 80% new
(83) Calvaria modified . .
polyamide6 bone formation
Kwanetal |0 | gmm | ADSCs | Ivdosapaite | o tion of bone with more than 150
(84) Parietal modified coated PLGA g .
mg/cc mineral content
0,
James et al. 2011 4mm4 ADSCs HA/PLGA After 4 weeks, pCT demor}strated 80% new bone
(85) Calvaria formation
Tsumanuma et 5*5Smm BMSCs After 8 weeks, in all groups 70% new bone was
al. (86) 2011 Periodont PLSCs BTCP/Collagen formed but a higher amount of cement was formed
) al APSCs when using PLSCs
After 8 weeks, radiodensitometric analysis
Rhee et al. 2011 8mm ADSCs DBM and/or demonstrated 42.75% new bone formation in
(87) Calvaria PLA DBM/PLA+ADSCs group and 57.69% in
DBM+ADSCs group
Lietal. 2010 8*12mm BMSCs nano- HA BMP7 sene After 8 weeks, histometric analysis showed
(88) Mandible | modified /polyamide g 85.54%7+2.07 new bone formation
Behnia et al. 2009 Alveolar BMSCs OsteoSet After 4 months, CT scan showed_ 34.5% and 25.6%
(18) cleft new bone formation
octacalcium
Fuji et al. 2009 4.2mm BMSCs phosphate Results demonstrated that OCP can enhance the
(24) Calvaria precipitated adhesion of cells to the scaffold
(OCP) alginate
Ko et al demineralized After 12 weeks, histological assessment and pCT
(89) ’ 2008 hMSCs bone showed almost complete repair oflesion and
powders/PLA formation of bone with a density of 0.30 g/cm?
Wang et al. 2007 8*12mm BMSCs nano- HA After12 weeks, histological assessment showed more
(90) Mandible /polyamide than 80% new bone formation
Cowan et al. 2005 4mm BMSCs, apatite-coated ]?{I\e/[t}i)nzo(igé nCT demonstrated new bone formation with 60-70%
o1 Calvaria ADSCs PLGA acid density after 2-4 weeks

BMSCs: Bone marrow mesenchymal stem cells — ADSCs: Adipose derived mesenchymal stem cells — DPSCs: Dental pulp stem cells — APSCs: alveolar periosteal stem
cells — PLSCs: Periodontal ligament stem cells — hMSCs: human mandibular mesenchymal stem cells — FGF:Fibroblast growth factor —- BMP: Bone morphogenetic protein —
TCP: Tricalcium phosphate — HA: hydroxyapatite - DBM:Demineralized bone matrix — PLGA: poly (lactic-co-glycolic acid) — PLA: poly (D, L-lactic acid)
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Discussion:

Although the importance of cell-and growth
factor-driven bone reconstruction strategies has
been well documented, this study focused on
scaffold-driven approaches.

The exact characteristics of scaffolds have been
evaluated in several review articles (31-33). The
scaffold of choice can be selected through
evaluation of these scaffolds and comparing
them with an ideal model. However, it should be
noted that to date, no scaffold has been found to
meet all the required criteria for an ideal
scaffold. In order to ensure successful treatment
of a bone defect, a scaffold should have at least
3 characteristics. Firstly, it should have correct
anatomical geometry. Secondly, the scaffold
should be able to endure mechanical loads
present in the area especially if it has not
undergone incubation in bioreactor and has been
implanted directly in its respective location in
the tissue. Last but not least, the scaffold should
enhance the regeneration ability of growth
factors.

Natural scaffolds:
Natural organic scaffolds:

Review of literature reveals that out of 18
studies using natural scaffolds, 11 had used bone
marrow stem cells (BMSCs). Other cells used in
these studies with a lower frequency included
dental pulp stem cells (cDPSCs) or puppy
deciduous teeth stem cells (pDTSCs), adipose-
derived stem cells (ADSCs), umbilical cord
blood mesenchymal stem cells (UCB-MSCs),
human embryonic stem cell-derived
mesenchymal stromal cells (ESC-MSCs) or
muscle-derived stem cells (MDSCs).

The animal models in these studies were mice,
rats, dogs, Guinea pigs or rabbits. The highest
number of studies has been conducted on rats.
Three studies had been conducted on humans.

Size of bone defects created in understudy
animal models was usually between 5 to 15mm
and these defects were usually created in

calvaria and skull and occasionally in alveolar
ridge, maxilla or mandible.

Of these 18 studies, in 4 a growth factor was
used along with a scaffold. In 4 studies, cells
were transfected with the growth factor. In other
studies no growth factor was wused and
sometimes the type of scaffold used contained
growth factors (like PRP).

Evaluation of the repair and filling of bone
defects was usually done after 1 to 3 months
using different methods. The more common
procedures included histology,
histomorphometry, and pnCT tomography. Bone
densitometry, spectroscopy, biomechanical tests
and Vickers hardness test were also used. Some
studies have used Immunohistochemistry and
gene expression analysis in the laboratory phase.

Evaluation of outcome in these studies reveals
that in the majority of them, concomitant use of
scaffold, cells and growth factor or scaffold and
cells yields better results compared to using cells
or scaffold alone. In 2 studies however, no
significant difference was detected between
repair of defect after using scaffold and cells and
repair without the graft material. The results of
human studies have been satisfactory.

In some studies, a comparison was done between
different natural scaffolds and results
demonstrated that type I collagen yields better
results compared to alginate. Also, comparison
of repair of 5 mm bone defects in mice calvaria
by using muscle-derived stem cells (MDSCs)
transfected with BMP4 gene along with 3 types
of scaffolds of collagen gel (CG), Fibrin sealant
(FS) and Gelatin sponge (GS) demonstrated that
defect repair with these 3 scaffolds is different in
terms of volume, shape and morphology.
Defects repaired with GS scaffold produced
hypertrophic bone while CG and FS scaffolds
resulted in formation of bone very similar to
calvaria natural bone (14).

Natural inorganic scaffolds

Of a total of 10 studies using inorganic natural
scaffolds, 6 used bone marrow stem cells
(BMSCs). The remaining studies used adipose-



derived stem cells (ADSCs) and induced
pluripotent stem cells (iPSCs).

Animal models used in these studies were mice,
dogs, cows and rabbits. The highest number of
studies was conducted on mice. To date, no
human study has been performed using these
scaffolds. Size of bone defects created in animal
models was usually between 1.5 to 30 mm and
these defects were usually created in calvaria,
and sometimes in parietal bone, orbit, ramus,
skull or mandible.

In 4 of these 10 studies, no growth factor was
used. In another 4 studies, cells were transfected
with the respective growth factor. In the
remaining 2 studies, growth factors were used.

Evaluation of the repair of defects within 1 to
6months after the intervention was done using
histology, histomorphometry, micro CT and
sometimes radiography. These studies also
confirmed the synergistic effect of simultaneous
use of scaffold, cells and growth factor or
scaffold and cells.

Synthetic scaffolds:
Synthetic polymer scaffolds:

In these 11 studies bone marrow stem cells
(BMSCs) were mainly used and only in one
study adipose-derived stem cells (ADSCs) were
employed.

The animal models used in these studies were
goats, mice, and rabbits. The majority of studies
were conducted on mice and rabbits. No human
study has been conducted by using these
scaffolds. Size of created defects was usually
within 5 to 15 mm and these defects were often
created in calvaria and sometimes in the skull,
condyle, mandible or extracted tooth socket. In 7
of these 11 studies no growth factor was used.

Evaluation of the repair of bone defects was
usually done within 1 to 6 months after
intervention using methods similar to those used
in previous studies.

In these studies chemical modifications of
scaffolds were also noted. For example,
comparison of the protease sensitive PEG matrix
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metalloproteinases (PEG-MMP) scaffold with
Poly (Ethylene Glycol)-Diacrylate(PEG-DA)
scaffold revealed that PEG-DA even in presence
of stem cells and growth factors inhibits bone
formation (64). Additionally, use of fibronectin-
coated polylactic acid (PLA) with adipose-
derived mesenchymal cells (ADCs) for repair of
rabbit skull defect demonstrated that fibronectin-
coated PLA scaffold can efficiently enhance its
effect on repair of such defects. Also it was
shown that when stem cells are placed in an
osteogenic environment before implantation, a
higher percentage of new bone formation is
achieved (65). Gradual release of growth factors
by using these scaffolds has also been noted.

Comparison of 3 scaffolds of PLGA, PLLA and
PLA-PEG revealed that PLGA had the greatest
ability to enhance adhesion, proliferation and
differentiation of cells and subsequent repair of
bone defect (67).

Since 2003, use of rapid prototyping technique
for fabrication of these scaffolds has been the
focus of attention aiming at obtaining scaffolds
with  controlled geometry and optimal
microscopic structure (70).

Synthetic ceramic scaffolds:

These studies have been conducted on mice,
rabbits, pigs, Guinea pigs, and dogs. One clinical
study on human using these scaffolds has also
been reported. In these studies, bone marrow
stem cells (BMSCs) has been mainly used and
only in one study deciduous teeth stem cells
were employed.

The important point that needs to be considered
when using this type of scaffolds is their
porosity. Comparison of these scaffolds with
Bio-Oss  demonstrated  their  superiority.
However, when compared with Bioglass no
difference was detected.

Composite scaffolds:

Studies performed on composite scaffolds used
along with stem cells and growth factors have
shown that compared to all groups even
autogenous bone grafts, quicker and greater
osteogenesis was observed inside the defect
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when using these scaffolds.

Comparison of the efficacy of bone marrow
stem cells (BMSCs), periodontal ligament stem
cells (PLSCs) and alveolar periosteal stem cells
(APSCs)used along with PTCP/collagen scaffold
for repair of a 5 mm defect on a periodontal wall
in a dog revealed that greater amounts of new
cement, new periodontal fibers and alveolar
bone were formed in the group where PLSCs
along with BTCP/collagen scaffold had been
used. Also, only in this group nerve filaments
were observed in reconstructed PDL (86).

Conclusion:

Based on the present study results, in the
majority of reviewed articles BMSCs were used
for bone reconstruction and they are still
considered as the gold standard for bone tissue
regeneration. Growth factor is one of the three
elements of tissue engineering. However, it has
been less frequently used in the mentioned
studies and occasionally scaffolds that are a
reservoir for growth factors have been used.
Among growth factors, BMPs especially BMP2
have had the highest application. Additionally,
PRP which has also been used as a scaffold
contains osteoinductive proteins and can be used
as a growth factor as well.

Among organic natural scaffolds, PRP and
collagen sponge have been more frequently used
compared to others and it seems that collagen
sponge has had more satisfactory results. Coral
and silver are the most frequently used organic
natural scaffolds and the outcome of using corals
has been better than that of silver.

Among the synthetic polymer scaffolds, PLGA
has been the most commonly used yielding
favorable results. Also, HA/TCP has been more
successful than other synthetic ceramic
scaffolds. Composite scaffolds are usually
fabricated by combining hydroxyapatite and
synthetic polymer scaffolds. Application of
composite scaffolds for reconstruction of
craniomaxillofacial defects has been less
common than other scaffolds but has increased
during the recent years.

In general, the best results were obtained when
using coral scaffolds followed by composite
scaffolds with more than 80% osteogenesis.

In order to achieve optimal results in bone tissue
engineering, there are some factors that have to
be considered by researchers including:

1- Clinical studies: To date, limited number
of clinical studies has been conducted on
humans and in each study sample size has
been very small.

2- Animal model studies: These studies
have mostly focused on reconstruction of
small defects in small animals. In order to
be able to generalize the results to human
beings, larger animals with biological
structures and immune systems similar to
those of humans have to be studied.

3- Control groups: Appropriate selection of
control groups can help in Dbetter
interpretation of results and more clearly
demonstrating the effect of each variable.

4- Time: Most studies have evaluated the
outcome after a short time period. Follow
up of samples for longer periods of time
can better demonstrate the results and the
possible side effects of materials used.

5- The tissue engineering triangle: In a
small number of studies all 3 elements of
tissue engineering have been used. It is
important to know what factors are required
to imitate natural healing and repair and be
aware of the fact that these factors have to
be gradually released into the environment

6- Evaluation of results: There are various
methods to present the study results; but, it
should be noted that angiogenesis and
immunologic reactions are among the most
important factors in bone reconstruction
and therefore have to be precisely
evaluated. Also, presenting the qualitative
results of osteogenesis can help for
comparison with similar studies.

Although tissue engineering can theoretically
have an application in dentistry, its clinical
application has not gained popularity since it is
not cost effective and has some considerations
related to cellular manipulation. However, its
perspective attracts dentists and researchers.
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In this review study on the scaffolds used for a custom-made composite scaffold using
reconstruction of craniomaxillofacial bone patient’s CT and MRI images along with the use
defects, it was revealed that there is still a long of genetically modified stem cells.

way till achieving an ideal treatment. Although
scaffold has been proposed as the key factor in
success of tissue engineering, after 20 years of Acknowledgments
tissue engineering introduction, an ideal scaffold
has yet to be designed. Studies have been mostly
performed on reconstruction of small defects and
characteristics like angiogenesis and bone
physiology have been less considered.

This study was conducted based on the literature
review of the doctoral thesis of Saeed Reza
Motamedian. The supervising and instructing
professors were Dr. Arash Khojasteh and Dr.

The future perspective of bone tissue Fahimeh S. Tabatabaei from Shahid Beheshti
engineering seems to include application of Univgrsity of Medical Sciences, School of
rapid prototyping technique for the fabrication of Dentistry.
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BMSCs: Bone marrow mesenchymal stem cells — ADSCs: Adipose derived mesenchymal stem cells — DPSCs: Dental pulp stem cells — APSCs:
alveolar periosteal stem cells — PLSCs: Periodontal ligament stem cells — hMSCs: human mandibular mesenchymal stem cells — FGF:Fibroblast
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PLGA: poly (lactic-co-glycolic acid) — PLA: poly (D, L-lactic acid)
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